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Depth and performance

@ Deeper architectures improved performance in many applications (e.g.
object recognition)
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Depth and performance XX

@ Deeper architectures improved performance in many applications (e.g.
object recognition)

@ LeNet (8), AlexNet (8), VGG (16, 19), GooglLeNet (22, ..., 76),
ResNet (34, ..., 152)
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Depth and Performance

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 24.27 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 275 6.05
ResNet-152 21.43 5.71

Figure credits: He et al. 2015
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Complexity vs. depth and width N

@ A measure of complexity of the mapping learned by the DNN
increases
o exponentially with its depth
o linearly with the layers’ width

Telgarsky 2015, 2016
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Depth and Over-fitting bang

TIRUPATI

@ Contrary to what we have discussed in Bias-Variance decomposition,
Over parameterizing a DNN often improves the performance

under-fitting . over-fitting
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(a) U-shaped “bias-variance” risk curve

(b) “double descent” risk curve

Belkin et al. 2018
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Depth and Over-fitting

@ Contrary to what we have discussed in Bias-Variance decomposition,
Over parameterizing a DNN often improves the performance

@ Only bias component (along with regularization) drives the
optimization
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Depth and Gradient Lo

@ We now have a good reason to develop deeper models
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Depth and Gradient

@ We now have a good reason to develop deeper models

@ However, amplitude of gradients also needs to be controlled
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Depth and Gradient

@ We now have a good reason to develop deeper models
@ However, amplitude of gradients also needs to be controlled

@ Gradients should not vanish
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Depth and Gradient AW

@ We now have a good reason to develop deeper models
@ However, amplitude of gradients also needs to be controlled
@ Gradients should not vanish

@ Gradients should be homogeneous at all the layers
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Gradient and Depth T

@ Because of our concern to take care of gradients, we often
compromise on the family of functions learned by the DNN
architectures
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